
XMHW Documentation
Release 0.9.4.dev5

Paola Petrelli

Feb 22, 2023

CONTENTS:

1 Install 3

2 Working on NCI server 5

3 Detecting marine heatwave events with xmhw 7
3.1 Calculating the climatologies . 7
3.2 Detecting MHW events . 8

4 Threshold in detail 11
4.1 New arguments . 11
4.2 Example . 12

5 Detect function in detail 13

6 Block average 15
6.1 Block_average function in detail . 16

7 Setting up dask 17

8 Detecting heatwaves at different frequencies 19

9 Indices and tables 21

i

ii

XMHW Documentation, Release 0.9.4.dev5

XMHW - Xarray based Marine HeatWave code

XMHW identifies marine heatwaves from a timeseries of Sea Surface Temperature data and calculates statis-
tics associated to the detected heatwaves. It is based on the`marineHeatWaves code <https://github.com/ecjoliver/
marineHeatWaves/>`_ by Eric Olivier

Functions:

• threshold

• detect

• block_average work in progress

CONTENTS: 1

https://github.com/ecjoliver/marineHeatWaves/
https://github.com/ecjoliver/marineHeatWaves/

XMHW Documentation, Release 0.9.4.dev5

2 CONTENTS:

CHAPTER

ONE

INSTALL

You can install the latest version of xmhw directly from conda (coecms channel)

conda install -c coecms -c conda-forge xmhw

If you want to install an unstable version or a different branch:

• git clone

• git checkout <branch-name> (if installing a a different branch from master)

• cd xmhw

• python setup.py install or pip install ./ use –user with either othe commands if you want to install it
in ~/.local

3

XMHW Documentation, Release 0.9.4.dev5

4 Chapter 1. Install

CHAPTER

TWO

WORKING ON NCI SERVER

Xmhw is pre-installed into a Conda environment at NCI. Load it with:

module use /g/data3/hh5/public/modules
module load conda/analysis3-unstable

NB You need to be a member of hh5 to load the modules

5

XMHW Documentation, Release 0.9.4.dev5

6 Chapter 2. Working on NCI server

CHAPTER

THREE

DETECTING MARINE HEATWAVE EVENTS WITH XMHW

xmhw is a xarray based version of the MarineHeatWave code. The main difference with the original code are the
following: * uses xarray and dask * the calculation of climatologies and detection of mhw events are in separate
functions, so they can be called independently * can handle multi dimensional grids and detect land points * NaNs
treatment can be customised * severity of events added to detect function output * produce xarray datasets instead of
list of dictionaries

Import threshold to calculate the climatologies and detect to detect the mhw events.

import xarray as xr
import dask
from xmhw.xmhw import threshold, detect

3.1 Calculating the climatologies

For this demo I am using a small subset of the NOAA OISST timeseries. You can use whatever seawater temperature
dataset you have available, just select a small region initially to test the code.

open file, read sst and calculate climatologies
ds =xr.open_dataset('sst_test.nc')
sst = ds['sst']
clim = threshold(sst)
clim

Dimensions: (doy: 366, lat: 12, lon: 20)
Coordinates:

quantile float64 0.9
* doy (doy) int64 1 2 3 4 5 ... 363 364 365 366
* lat (lat) float64 -43.88 -43.62 ... -41.12
* lon (lon) float64 144.1 144.4 ... 148.9

Data variables:
thresh (doy, lat, lon) float64 dask.array<chunksize=(365, 1, 20), ...
seas (doy, lat, lon) float64 dask.array<chunksize=(365, 1, 20), ...

Attributes:
source: xmhw code: https://github.com/coecms/xmhw
title: Seasonal climatology and threshold calculated to detect marine

heatwaves following the Hobday et al. (2016) definition
history: 2021-11-19: calculated using xmhw code https://github.com/coecms/xmhw
xmhw_parameters: Threshold calculated using:

(continues on next page)

7

XMHW Documentation, Release 0.9.4.dev5

(continued from previous page)

90 percentile;
climatology period is 1981-1981';
window half width used for percentile is 5; width of moving
average window to smooth percentile is 31

As you can see above clim is a xarray dataset with two variables: * thresh - the percentile threshold * seas - the
climatology mean.

The dimension is doy which stands for day of the year, this is based on a 366 days calendar. Finally the dataset includes a
few global attributes detailing the climatology period, the percenttile used and other parameters used in the calculation.
This can be easily saved to a file simply by running: > clim.to_netcdf(‘filename’)

3.2 Detecting MHW events

Now that we have the climatologies we can run detect

mhw = detect(sst, clim['thresh'], clim['seas'])
mhw

xarray.Dataset
Dimensions:

events: 2047 lat: 12 lon: 20
Coordinates:

events (events) float64 91.0 116.0 ...
lat (lat) float64 -43.88 -43.62 ...
lon (lon) float64 144.1 144.4 ...

Data variables:
event (events, lat, lon) float64 nan nan ...
index_start (events, lat, lon) float64 nan nan ...
index_end (events, lat, lon) float64 nan nan ...
time_start (events, lat, lon) datetime64[ns] NaT NaT ...
time_end (events, lat, lon) datetime64[ns] NaT NaT ...
time_peak (events, lat, lon) datetime64[ns] NaT NaT ...
intensity_max (events, lat, lon) float64 nan nan ...
intensity_mean (events, lat, lon) float64 nan nan ...
intensity_cumulative (events, lat, lon) float64 nan nan ...
severity_max (events, lat, lon) float64 nan nan ...
severity_mean (events, lat, lon) float64 nan nan ...
severity_cumulative (events, lat, lon) float64 nan nan ...
severity_var (events, lat, lon) float64 nan nan ...
intensity_mean_relThresh (events, lat, lon) float64 nan nan ...
intensity_cumulative_relThresh (events, lat, lon) float64 nan nan ...
intensity_mean_abs (events, lat, lon) float32 nan nan ...
intensity_cumulative_abs (events, lat, lon) float32 nan nan ...
duration_moderate (events, lat, lon) float64 nan nan ...
duration_strong (events, lat, lon) float64 nan nan ...
duration_severe (events, lat, lon) float64 nan nan ...
duration_extreme (events, lat, lon) float64 nan nan ...
index_peak (events, lat, lon) float64 nan nan ...
intensity_var (events, lat, lon) float64 nan nan ...
intensity_max_relThresh (events, lat, lon) float64 nan nan ...

(continues on next page)

8 Chapter 3. Detecting marine heatwave events with xmhw

XMHW Documentation, Release 0.9.4.dev5

(continued from previous page)

intensity_max_abs (events, lat, lon) float32 nan nan ...
intensity_var_relThresh (events, lat, lon) float64 nan nan ...
intensity_var_abs (events, lat, lon) float32 nan nan ...
category (events, lat, lon) float64 nan nan ...
duration (events, lat, lon) float64 nan nan ...
rate_onset (events, lat, lon) float64 nan nan ...
rate_decline (events, lat, lon) float64 nan nan ...

Attributes:
source: xmhw code: https://github.com/coecms/xmhw
title: Marine heatwave events identified applying the

Hobday et al. (2016) marine heat wave definition
history: 2021-11-19: calculated using xmhw code https://github.com/coecms/xmhw
xmhw_parameters: MHW detected using: 5 days of minimum duration;

events separated by 2 or less days were joined

We can see above all the output variables listed and again global attributes detailing the dataset settings. The dimension
events represents the starting point of each event. Let’s select one grid point to see more in detail its structure.

mhw_point = mhw.isel(lat=2, lon=15)
mhw_point.events

array([91., 116., 164., ..., 14375., 14379., 14381.])

Printing out the all events array shows that the first detected event occurs at the 91st timestep of the original timeseries,
the last events starts at timestep 14381. Not all these events will be occuring at the selected grid point. We can see that
having a look at the index_start or time_start variables. By dropping all the NaN values along the events dimension,
we can see there are 60 mhw events occuring at this grid point.

mhw_point.time_start.dropna(dim='events')

array(['1985-04-08T12:00:00.000000000', '1988-05-12T12:00:00.000000000',
'1988-06-10T12:00:00.000000000', '1988-07-17T12:00:00.000000000',
...
dtype='datetime64[ns]')

As for the climatologies dataset, we can save the mhw dataset to a netcdf file easily.

mhw.to_netcdf('mhw_test.nc')

This file has a small grid, so we could save it as it is and still produce a small file. However, it is worth adding some
“encoding” to save storage, this will be necessary when dealing with bigger grids. Xarray has automatically used a
float64 format for ~20 of the variables. Converting all the variables to float32 format will save a lot of storage. This
dataset also has a lot of NaNs values, as its structure is “sparse”, so it is a good idea to save the results in a compressed
format. Encoding allows us to add internal compression and also to convert the arrays format.

First we create a dictionary representing the settings we want to use
then we apply that to all the dataset variables and we use the
resulting dictionary when calling to_netcdf()
#
comp = dict(zlib=True, complevel=5, shuffle=True, dtype='float32')
encoding = {var: comp for var in mhw.data_vars}
mhw.to_netcdf('mhw_test_encoded.nc', encoding=encoding)

3.2. Detecting MHW events 9

XMHW Documentation, Release 0.9.4.dev5

Checking the sizes of both files

!du -sh mhw_test.nc
!du -sh mhw_test_encoded.nc

109M mhw_test.nc
2.2M mhw_test_encoded.nc

10 Chapter 3. Detecting marine heatwave events with xmhw

CHAPTER

FOUR

THRESHOLD IN DETAIL

In the previous example the threshold function was called with its default arguments, so only temperature was needed.
As for the original Marine heatwave code several other parameters can be set:

threshold(temp, tdim='time', climatologyPeriod=[None,None], pctile=90, windowHalfWidth=5,
smoothPercentile=True, smoothPercentileWidth=31, maxPadLength=None,
coldSpells=False, Ly=False, anynans=False, skipna=False):

Where temp is the temperature timeseries, this is the only input needed. Arguments names are the same as the original
MarineHeatWave code, where possible:

• climatologyPeriod: list(int), optional Period over which climatology is calculated, specified as list of start and
end years. Default is to use the full time series.

• pctile: int, optional Threshold percentile used to detect events (default=90)

• windowHalfWidth: int, optional Half width of window about day-of-year used for the pooling of values and
calculation of threshold percentile (default=5)

• smoothPercentile: bool, optional If True smooth the threshold percentile timeseries with a moving average
(default is True)

• smoothPercentileWidth: int, optional Width of moving average window for smoothing threshold in days, has
to be odd number (default=31)

• maxPadLength: int, optional Specifies the maximum length (days) over which to interpolate NaNs in input
temp time series. i.e., any consecutive blocks of NaNs with length greater than maxPadLength will be left as
NaN. If None it does not interpolate (default is None).

• coldSpells: bool, optional If True the code detects cold events instead of heat events (default is False)

• Ly: bool, optional !! Not yet fully implemented If True the length of the year is < 365/366 days (e.g. a 360 day
year from a climate model). This affects the calculation of the climatology (default is False)

4.1 New arguments

• tdim - optional, to specify the time dimension name, default is “time” . NB you do not need to pass the time
array as in the original as the timeseries is an xarray data array the time dimension is included

• anynans: bool, optional Defines in land_check which cells will be dropped, if False only ones with all NaNs
values, if True all cells with even 1 NaN along time dimension will be dropped (default is False)

• skipna: bool, optional If True percentile and mean function will use skipna=True. Using skipna option is much
slower (default is False)

More on missing values later.

11

XMHW Documentation, Release 0.9.4.dev5

4.2 Example

This is just showing how we can call the function changing some of the default parameters. In this case we are assuming
sst time dimension is called ‘time_0’ and we want a base period from 1 Jan 1984 to 31 Dec 1994.

clim = threshold(sst, climatologyPeriod=[1984,1994], tdim=‘time_0’)

NB after passing the timeseries as first argument, the order of the other ones is irrelevant as they are all keywords
arguments.

It is important to notice that differently from the original function which takes a numpy 1D array, because we are using
xarray we can pass a 3D array (in fact we could pass any n-dim array) and the code will deal with it. We selected a
12X20 lat-lon region and of these 135 grid cells are ocean.

The function return a dataset with the arrays: - thresh - for the threshold timeseries - seas - for the seasonal mean

Differently from the original function, here the climatologies are saved not along the entire timeseries but only along the
new doy dimension. Given that xarray keeps the coordinates with the arrays there is no need to repeat the climatologies
along the time axis. We also try to follow the CF conventions and define appropriate variables attributes and some global
attributes that record the parameters used to calculate the threshold for provenance.

4.2.1 Handling of dimensions and land points

As so before we are passing the full grid to the function without worrying about land points, or how many dimensions it
has. Before calculating anything, the code calls the function land_check() (from xmhw.identify). This function handles
the dimensions and land points of the grid in two steps: - stacks all dimensions but the time dimension in a new ‘cell’
dimension; - removes all the land points, these are assumed to have all NaN values along the time axis

In our example ‘cell’ will be composed by stacked (lat,lon) points. The resulting array will have (time, cell) dimensions,
and the cell points which are land will not be part of it. The climatologies then will be calculated for each cell point.
Finally the results will be unstacked before returning the final output. NB This approach can occasionally produce a grid
of different size from the original if all the cells at a specific latitude or longitude are masked as land. In that case the final
grid will be smaller, you can however easily reindex your results as the original grid. > clim = clim.reindex_like(sst)

4.2.2 Handling of NaNs

It is important to understand how the threshold() function is dealing with NaNs. If there are NaNs values in the
timeseries that is passed to the function, this could produce wrong results. You can take care of NaNs in the timeseries
before passing it to threshold or you can take one of the following approaches: 1) We already saw that land_check()
will remove all the points that have all NaNs values along the time dimension. You can choose to be more strict and
also exclude any ell points that even just one NaN value. To do so you can set the anynans argument to True. This
is a bit of an extreme approach as especially with observations data it is not unusual to have a few NaNs. > clim =
threshold(sst, anynans=True)

2) set skipna to True - this tells the code to skip NaNs when calculating averages and/or the percentile. By default
the skipna argument is set to False as using this option can double up the execution time. But if you are working
on a small grid than it is a safer option. > clim = threshold(sst, skipnans=True)

3) use maxPadLength this will trigger interpolation for all NaNs points, with the exception of consecutive blocks
with length greater than maxPadLength. > clim = threshold(sst, maxpadlength=5, anynans=True)

Used in conjuction with anynans as shown above you can use it to eliminate only the cell points that have bigger gaps.

12 Chapter 4. Threshold in detail

CHAPTER

FIVE

DETECT FUNCTION IN DETAIL

The detect function identifies all the mhw events and their characteristics. It corresponds to the second part of the
original detect function and again mimic the logic and most of options of the original code.

def detect(temp, th, se, tdim='time', minDuration=5, joinGaps=True,
maxGap=2, maxPadLength=None, coldSpells=False,
intermediate=False, anynans=False):

Apart from the timeseries, the threshold and the seasonal average, the other arguments are all optional. As for threshold
an option to pass the name of the time dimension (tdim) and the anynans argument to define which grid cells will
be removed from calculation, were added. It is important to used this last consistently with the approach used when
calculating the threshold. The last new argument is intermediate, when set to True, also intermediate results are saved.
These include the original timeseries, climatologies, detected events, categories and some of the mhw properties but
along the full length of the time axis.

Arguments specific to detect(): * minDuration: int, optional Minimum duration (days) to accept detected MHWs
(default=5) * joinGaps: bool, optional If True join MHWs separated by a short gap (default is True) * maxGap: int,
optional Maximum limit of gap length (days) between events (default=2)

mhw, intermediate = detect(sst, clim['thresh'], clim['seas'], intermediate=True)
intermediate

xarray.Dataset
Dimensions:

time: 14392 lat: 12 lon: 20
Coordinates:

time (time) datetime64[ns] 1981-09-01T12:00:00 ...
lat (lat) float64 -43.88 -43.62 ...
lon (lon) float64 144.1 144.4 ...

Data variables:
ts (time, lat, lon) float32 11.13 11.16 ...
seas (time, lat, lon) float64 nan nan ...
thresh (time, lat, lon) float64 nan nan ...
bthresh (time, lat, lon) object False ...
events (time, lat, lon) float64 nan nan ...
relSeas (time, lat, lon) float64 nan nan ...
relThresh (time, lat, lon) float64 nan nan ...
relThreshNorm (time, lat, lon) float64 nan nan ...
severity (time, lat, lon) float64 nan nan ...
cats (time, lat, lon) float64 nan nan ...
duration_moderate (time, lat, lon) object False ...
duration_strong (time, lat, lon) object False ...

(continues on next page)

13

XMHW Documentation, Release 0.9.4.dev5

(continued from previous page)

duration_severe (time, lat, lon) object False ...
duration_extreme (time, lat, lon) object False ...
mabs (time, lat, lon) float32 nan nan ...

Attributes: (0)

14 Chapter 5. Detect function in detail

CHAPTER

SIX

BLOCK AVERAGE

The blockAverage function on the original MHW code is used to calculate statistics along a block of time. The default
is 1 year block. If the timeseries used starts or ends in the middle of the year then the results for this two years have to
be treated carefully. Most of the statistics calculated on the block are simple statistics. Given that the mhw properties
are saved now as an array it is simple to calculate them after grouping by year or “bins”of years on the entire dataset.
However, we added xmhw has a block_average() function to reproduce the same results.

To call with standard parameters, all is needed is the output of detect function
I am also passing the intermediate results datasets as a way to provide the␣
→˓temperature and
climatologies
from xmhw.stats import block_average
block = block_average(mhw, dstime=intermediate)
block

Assuming time is time dimension
Both ts and climatologies are available, calculating ts and category stats

xarray.Dataset
Dimensions:

years: 41 lat: 12 lon: 20
Coordinates:

years (years) object [1981, 1982) ...
lat (lat) float64 -43.88 -43.62 ...
lon (lon) float64 144.1 144.4 ...

Data variables:
ecount (years, lat, lon) float64 0.0 0.0 ...
duration (years, lat, lon) float64 nan nan ...
intensity_max (years, lat, lon) float64 nan nan ...
intensity_max_max (years, lat, lon) float64 nan nan ...
intensity_mean (years, lat, lon) float64 nan nan ...
intensity_cumulative (years, lat, lon) float64 nan nan ...
total_icum (years, lat, lon) float64 0.0 0.0 ...
intensity_mean_relThresh (years, lat, lon) float64 nan nan ...
intensity_cumulative_relThresh (years, lat, lon) float64 nan nan ...
severity_mean (years, lat, lon) float64 nan nan ...
severity_cumulative (years, lat, lon) float64 nan nan ...
intensity_mean_abs (years, lat, lon) float64 nan nan ...
intensity_cumulative_abs (years, lat, lon) float64 nan nan ...
rate_onset (years, lat, lon) float64 nan nan ...
rate_decline (years, lat, lon) float64 nan nan ...

(continues on next page)

15

XMHW Documentation, Release 0.9.4.dev5

(continued from previous page)

ts_mean (years, lat, lon) float32 11.57 11.56 ...
ts_max (years, lat, lon) float32 14.28 14.32 ...
ts_min (years, lat, lon) float32 9.51 9.46 ...
moderate_days (years, lat, lon) float64 0.0 0.0 ...
strong_days (years, lat, lon) float64 0.0 0.0 ...
severe_days (years, lat, lon) float64 0.0 0.0 ...
extreme_days (years, lat, lon) float64 0.0 0.0 ...
total_days (years, lat, lon) float64 0.0 0.0 ...

6.1 Block_average function in detail

def block_average(mhw, dstime=None, period=None, blockLength=1, mtime='time_start',
removeMissing=False, split=False):

Parameters

mhw: xarray Dataset

Includes MHW properties by events
dstime: xarray DataArray/Dataset, optional

Based on intermediate dataset returned by detect(), includes
original ts and climatologies (optional) along 'time' dimension
(default is None)
If present and is array or dataset with only 1 variable script assumes this
is sst and sw_temp is set to True
If present and dataset with 'thresh' and 'seas' also sw_cats is set to True

period: pandas Series
Absolute value of temperature along time index

blockLength: int, optional
Size of blocks in years (default=1)

mtime: str, optional
Name of mhw time variable to use to assign events to blocks,
Options are start or peak times (default='time_start')

removeMissing: bool, optional
If True remove statistics for any blocks that has NaNs in ts.
Work in progress
(default is False)

split: bool, optional
Work in progress
(default is False)

We are still working on the mhw_rank() function to calculate rank and return periods.

16 Chapter 6. Block average

CHAPTER

SEVEN

SETTING UP DASK

Both the threshold and detect functions are set up to use dask delayed automatically. I found this was a good away
to make sure the main processes would be automatically run in parallel even if you are not experienced with dask.
This approach add some overhead before the actual calculation starts, when dask is working out the task graph. This
is usually negligible, but with a bigger grid size you might end up with too many tasks and a less efficinet graph. In
that case, and anytime you are working with limited resources, it is more efficient to split the grid and run the code
separately for each grid section. You can easily recompose the original grid by concatenating together the resulting
datasets. Even when running the functions on the full grid it is important to setup proper chunks. The code will make
sure that the timeseries for each grid point are all in the same chunk. This is important as it is requires by some of the
calculation, it also makes sense as every operation is done cell by cell. > sst = sst.chunk({‘time’: -1})

This corresponds to have a chunk size (for time dimension) equal to the length of the timeseries. The code will not do
anything for the other dimensions, so it is a good idea to make sure that once you have chunked the time dimension,
you are left with resonable chunk sizes.

This will tell dask to automatically determine a good chunk size for the other␣
→˓dimensions
Assuming that the sst variable has (time, lat, lon) dimensions
sst = sst.chunk({'time': -1, 'lat': 'auto', 'lon': 'auto'})
sst.data

sst.data

shows the chunks shape and their size. As the sst array is quite small we have only 1 chunk in this case, if this was a
big grid we would want chunks around 200 MB of size. Below is an example running detect on a big grid by splitting
the grid according to chunks. You can split the grid in different ways and advantage of this methid is that the data will
be all in one chunk. So by managing the chunksize you can optimise the amount of memory used. Whichever way you
are splitting the grid make sure that is somehow aligned with the dataset chunks.

retrieve chunks information
xt/xy will be lists the number of lat/lon points for each chunk
As an example
[20, 20, 20], [30, 30, 30]
means we have 20 lat and 30 lon points for each chunk for a total of 600 grid cells
we set these as out "steps"
dummy, xt, xy = sst.chunks
xtstep = xt[0]
ytstep = yt[0]
the length of the list gives has the number of chunks, in the example 3
xtblocks = len(xt)
ytblocks = len(yt)
print(xtstep, ytstep, xtblocks, ytblocks)

17

XMHW Documentation, Release 0.9.4.dev5

create an empty list to store the results
loop first across the ytblocks and then xtblocks
using xtstep and ytstep to determine the indexes to use with isel

results = []
for i in range(xtblocks):

xt_from = i*xtstep
xt_to = (i+1)*xtstep
for j in range (ytblocks):

yt_from = j*ytstep
yt_to = (j+1)*ytstep
ts = sst.isel(xt_ocean=slice(xt_from,xt_to),yt_ocean=slice(yt_from,yt_to))
th = thresh.isel(xt_ocean=slice(xt_from,xt_to),yt_ocean=slice(yt_from,yt_to))
se = seas.isel(xt_ocean=slice(xt_from,xt_to),yt_ocean=slice(yt_from,yt_to))
j+=1
run function
results.append(detect(ts,th,se))
del ts, th, se

i+=1

Combine the results into one dataset
mhw = xr.combine_by_coords(results)

18 Chapter 7. Setting up dask

CHAPTER

EIGHT

DETECTING HEATWAVES AT DIFFERENT FREQUENCIES

The original marine heatwave code assumes the timeseries has daily frequency. In xmhw you can also calculate the
climatologies and then detect the heatwaves based on your timeseries original timestep. So if you are passing monthly
data you can calculate monthly climatologies, if you pass a timeseries resampled as an average over n-days than n-days
will be your climatology base unit.

First I am loading again the test data and
create a new timeseries by averaging 5-days interval
sst = ds['sst']
sst_5days = sst.coarsen(time=5, boundary="trim").mean()

Now we can calculate the threshold and detect mhw again with the new timeseries.
We are using the 'tstep=True' option to tell the code to use the 5days intervals
as timestep base
clim_5days = threshold(sst_5days, smoothPercentileWidth=5, tstep=True)

XmhwException Traceback (most recent call last)
/local/w35/pxp581/tmp/ipykernel_2716220/2181158061.py in <module>
2 # We are using the 'tstep=True' option to tell the code to use the 5days intervals
3 # as timestep base
...

---> 62 raise XmhwException("To use original timestep as " +
63 "climatology base unit, timeseries has to have" +
64 " complete years")

XmhwException: To use original timestep as climatology base unit,
timeseries has to have complete years

The first attempt produced an exception this is because at the moment the code cannot handle yet incomplete years.
This means that every year needs to have the same number of timesteps. This timeseries starts in Sep 1981 and end in
Jan 2021. So we have to select only the years in between. We also have to remove all the 29 of Feb so every year has
365 days that can be equally split in 5 days intervals.

sst_yrs = sst.sel(time=slice('1982','2020'))
sst_365 = sst_yrs.sel(time=~((sst_yrs.time.dt.month == 2) &

(sst_yrs.time.dt.day == 29)))
sst_5days = sst_365.coarsen(time=5, boundary="exact").mean()

clim_5days = threshold(sst_5days, smoothPercentileWidth=5, tstep=True)
clim_5days

(continues on next page)

19

XMHW Documentation, Release 0.9.4.dev5

(continued from previous page)

xarray.Dataset
Dimensions: doy: 73 lat: 12 lon: 20
Coordinates:

quantile () float64 0.9
doy (doy) int64 1 2 3 4 ... 72 73
lat (lat) float64 -43.88 -43.62 ... -41.12
lon (lon) float64 144.1 144.4 ... 148.9

Data variables:
thresh (doy, lat, lon) float64 dask.array<chunksize=(72, 1, 20), ...
seas (doy, lat, lon) float64 dask.array<chunksize=(72, 1, 20), ...

Attributes:
source: xmhw code: https://github.com/coecms/xmhw
title: Seasonal climatology and threshold calculated to detect marine

heatwaves following the Hobday et al. (2016) definition
history: 2021-11-19: calculated using xmhw code https://github.com/coecms/xmhw
xmhw_parameters: Threshold calculated using:

90 percentile;
climatology period is 1982-1982';
window half width used for percentile is 5;
width of moving average window to smooth percentile is 5

As you can see we ended with only 73 “doy” steps, as this day-of-the-year is really a 5 days interval. Note also that
I’ve changed the smoothPercentileWidth to 5 instead of the default 31. All the default for both the threshold and detect
functions are based on a daily timesteps so if you use a different frequency they need to be adapted to produce sensible
results.

The detect() function will also need to be passed tstep=True to be consistent.

mhw_5days = detect(sst_5days, clim_5days['thresh'], clim_5days['seas'],
maxGap=1, tstep=True)

mhw_5days

xarray.Dataset
Dimensions: events: 208 lat: 12 lon: 20
Coordinates:

events (events) float64 282.0 284.0 ... 2.818e+03
lat (lat) float64 -43.88 -43.62 ... -41.12
lon (lon) float64 144.1 144.4 ... 148.9

Data variables: (31)
Attributes:

source: xmhw code: https://github.com/coecms/xmhw
title: Marine heatwave events identified applying the Hobday

et al. (2016) marine heat wave definition
history: 2021-11-19: calculated using xmhw code https://github.com/coecms/xmhw
xmhw_parameters: MHW detected using:

5 days of minimum duration;
events separated by 1 or less days were joined

You can also use the same option with monthly, weekly data or any other interval which is not daily. This is the option
to use also with a 360 days year calendar, as the standard behaviour would be to try to get force the timeseries in a 366
days year, which would cause an error. So even if ‘tstep’ is False, the code will try to work out the calendar and if this
is a 360 days one it will impose tstep=True.

20 Chapter 8. Detecting heatwaves at different frequencies

CHAPTER

NINE

INDICES AND TABLES

• genindex

• modindex

• search

21

	Install
	Working on NCI server
	Detecting marine heatwave events with xmhw
	Calculating the climatologies
	Detecting MHW events

	Threshold in detail
	New arguments
	Example
	Handling of dimensions and land points
	Handling of NaNs

	Detect function in detail
	Block average
	Block_average function in detail

	Setting up dask
	Detecting heatwaves at different frequencies
	Indices and tables

